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Introduction

Laminar-turbulent transition in shear flows is still an enigma in the area of fluid

mechanics. The conventional explanation of the phenomenon is based on the

instability of the shear flow with respect to infinitesimal disturbances. The

conventional hydrodynamic stability theory deals with the analysis of normal modes

that might be unstable. The latter circumstance is accompanied by an exponential

growth of the disturbances that might lead to laminar-turbulent transition.

Nevertheless, in many cases, the transition scenario bypasses the exponential growth

stage associated with the normal modes. This type of transition is called bypass

transition. An understanding of the phenomenon has eluded us to this day. One

possibility is that bypass transition is associated with so-called algebraic (non-modal)

growth of disturbances in shear flows. 1,2
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A numerical analysis of spatial non-modal growth within the scope of the

linearized boundary-layer equations for an incompressible flow over a flat plate was

carried out in Refs. 3 and 4. Spatial analysis within the scope of the linearized Navier-

Stokes equations (quasi parallel approximation of compressible and incompressible

flows) was presented in Refs. 5-7. Recently, the method of Ref. 4 was generalized for

the case of compressible boundary layers. $ The main results of these theoretical

models are as follows:

• A system of counter-rotating streamwise vortices, which are periodic in the

spanwise direction, provides the strongest growth of the disturbance.

• There is an optimal spacing of the streamwise vortices, leading to the strongest

effect.

The effect of pressure gradients on the transient growth mechanism was considered

within the scope of temporal theory by Corbett and Bottaro 9 and within the scope of

spatial theory by Tumin and Reshotko. 7 Both studies were based on the quasi-parallel

flow assumption. Tumin 10 analyzed the pressure-gradient effect for the Falkner-Skan

profile within the scope of an analytical model when the spanivise wave number is

very small. The pressure-gradient effect within the scope of spatial theory with

nonparallel base flow and finite spanwise wave numbers has not been considered, yet.

Another motivation for the present work stems from separation flow control on lo«,

pressure turbines (LPTs). The performance of LPTs is strongly affected by the flow

separation. There is a possibility of delaying the boundarylayer separation by tripping

the boundary layer with the help of roughness elements or other devices. Usually, a trial

and-error method is used to determine an appropriate placement of the control elements.
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This approach s time consuming and expensive. A recent investigation by Reshotko and

Tumini 1 demonstrated that roughness- induced transition might be related to the transient

growth mechanism.

Periodically spaced in the spanwise direction, roughness elements generate a system

of counter-rotating streamv,'ise vortices. Due to a secondary instability mechanism, the

streamwise vortices can lead to earlier transition to turbulence. They also provide a

mixing enhancement due to redistribution of the streamwise momentum. Consequently,

optimization of the streamwise vortices for maximum energy growth leads to

maximization of the flow control effectiveness. In the present work, an analysis of the

optimal disturbances/streamwise vortices associated with the transient growth mechanism

is performed for boundary layers in the presence of a streamwise pressure gradient. The

theory will provide the optimal spacing of the control elements in the spanwise direction

and their placement in the streamwise direction.

Governing Equations

Because the flows of interest have relatively low Mach numbers, we consider steady

three-dimensional disturbances in an incompressible two-dimensional boundary layer.

We choose the streamwise coordinate x along the surface. The coordinate y will measure

distance from the wall. We define a small parameter F =/ Uj e Tre f that is the inverse

square root of the Reynolds number, and v, Uy,e f , and L,,e f are viscosity, reference

velocity, and reference length, respectively. The streamwise coordinate is scaled with

L,,e f while the vertical coordinate y and spanwise coordinate z are scaled with
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vLye f / ref . The following scaling is assumed for the velocity disturbances

u, v, and w , and the pressure p :

it —U ref , 1'—EUef , w-CU 	 p—£2PUref	 (1)

This scaling of the linearized Navier-Stokes equations and neglecting the curvature

effects lead to the governing equations for Gortler instability, with the Gortler number

equal to zero. We look for a periodic solution in the spanwise direction, with the

corresponding wave number 0 . The governing equations for the amplitude functions can

be written in dimensionless form as follows: 3j

Oil a7
—+—+P w =o
ax ay

2

a(Uu)+Vau +v aU = a 2-/3 2 u(3)
Ox	 ay	 a, ay

2,C9 
(uV+vU)+

a 
(2Vv)+PVw+

ap
 = 

a 
z —^3 2v	 (4)

y	 Oy ay

2
a(Uw)+ ay (VW) l^h 

av2	
2w	

(5)

where U(x,y) and V(x,y) are the streamwise and normal velocity components of the

base flow, respectively. The streamwise velocity, U(x,y), is scaled with Ure f , and the

normal velocity, V (x, y) , is scaled with -Uref '

The following boundary conditions are applied to the solutions:

	

y=0:	 a=v=w=0	 (6a)

(2)
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Y —> cc:	 u, 14", P —> 0	 (6b)

Equations (2)-(5) can be solved subject to bDundary conditions (6a) and (6b) with

prescribed initial velocity perturbations at x = xo.

Optimization of Eneray Growth

The authors of Refs. 3 and 4 employed an iterative procedure to find the optimal

disturbances in terms of the maximum of the energy growth ratio G = Eout / E;,, , where

Ein and Eout stand for the input and output energy norms. Andersson et a1 3 used the

same definitions of Ein and Eout as for the disturbance energy,

Ymax

E = f (1/ 2 +€ 2 172 +e 2 w2 )dv	 (7)
0

whereas Luchini4 employed the knowledge that the optimal disturbances are represented

by streamwise vortices with corresponding output as streamwise velocity streaks,

?'max

	

Ein = ^2 f ( r'2 +'^'2) dY	 (8a)
0

Y111ax

E0111-	 f 
it 

2
dy	 (8b)

0

Ylllax

f u2dy

G = EO"t = €-2	 0	 (8c)
Ei„	 YUI

fax (,2+11"2)dv
0

As was shown in Ref. 3, the two definitions of the optimal disturbances lead to the

same results at Reynolds numbers of 104 and higher. Because the iteration procedure
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based on the optimization of ratio (8c) provides significant simplification, we adopt it for

the following analysis. Because Eqs. (2)-(5) are independent of e, the value of e 2 G is

invariant with respect to the Reynolds number.

Numerical Results

Falkner-Skan Base Flow

We consider a Falkner-Skan family of boundary-layer profiles with free-stream

velocity distribution Ue = Cx' and corresponding Hartree parameter PH = In/ (in +1) .

For the purpose of convenience, we have used the velocity scale Uref =UeL = CLm and

the length scale LYef = L 1(ni+1) . The latter allowed the use of the conventional scaling

of boundary- layer solutions with H, e f = VV L	 + 1) UeL = Lref / Uref -

Figure 1 shows the scaled energy ratio versus spanwise wave number 0 for three

Hartree parameters, PH = -0.1, 0.0, and 0.1. The starting and the ending points, xin /L

and xout /L, are equal to 0.2 and 1.0, respectively. The Reynolds number Re L in Fig. 1

and what follows is defined as UeL L /v . One can see that an unfavorable pressure

gradient ( PH < 0) leads to an increase in the energy growth while a favorable pressure

gradient (PH > 0) leads to suppression of the transient growth mechanism. The latter is

consistent with results obtained within the scope of parallel flow approximation?

Analysis of various starting points, xi, / L , has shown that, in addition to an optimal

spacing between perturbers, there is an optimal location from the leading edge (a similar

result was observed in Ref. 8 for compressible boundary layers over a flat plate).
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Example of LPT Conditions

Volino 12 simulated low-pressure turbine (LPT) airfoil conditions in a low-speed wind

tunnel. The test section was designed as a passage between two airfoils. The local free-

stream velocity at a favorable pressure-gradient region was closely approximated by the

following equation:

0.214

	

Ue =1.48 
x	

(9)
Uexit	 Ls

where Ls is the suction surface length and Uexit is the nominal exit free-stream velocity

based on the inviscid solution. The distribution (9) corresponds to a Falkner-Skan flow

with the Hartree parameter PH = 0.353 .

Figure 2 demonstrates the energy ratio scaled with the Reynolds number Reexit =

UexitLs /v versus the spanwise wave number scaled with HLs — VVLs / 'exit . The

ending point was prescribed at xout /Ls = 0.444 while the starting points varied from

0.111 to 0.289. One can see that there is an optimal starting point, xi, / L The optimal

velocity perturbation profiles at xout /Ls = 0.444 (for u), xi„ /Ls = 0.111 (for v and w),

and PHLs = 0.925 are shown in Fig. 3.

The results indicate that we are dealing with a very strong favorable pressure gradient

that suppresses the transient growth mechanism. For example, at a typical LPT cruise

Reynolds number of 50,000, the transient growth will provide an energy amplification of

less than 50. This is a relatively small number. If we take into account that, in practice,

the perturber will not produce the optimal inflow field, the real amplification will be of an

even smaller value. For example, in Blasius boundary layer, the theory predicts
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amplification of 250 at the same Reynolds number of 50,000 (Ref. 9). Correlation

between the transient growth factor and transition has not been established yet, therefore

the effectiveness of the transient growth mechanism in preventing now separation cannot

be assessed quantitatively at the present time.

There is a possibility of enhancing the transient growth mechanism by means of wall

cooling. The effect of wall cooling was investigated by Tumin and Reshotko 7 within the

scope of a parallel flow approximation In order 1) estimate possible increases of the

energy ratio on a cold wall at a high favorable pressure gradient, we utilize the method of

Ref. 7 for a compressible flow with local Mach number of 0.5 and Hartree parameter of

0.353. The results are shown in Fig. 4. One can see that cooling of the wall might provide

a tenfold increase in the energy ratio.

Summary

The results for the transient growth phenomenon within the scope of the linearized

boundary-layer equations in the presence of a streamwise pressure gradient are consistent

with previous results obtained within the scope of the parallel flow approximation and

linearized Navier-Stokes equations. 7 A favorable pressure gradient decreases the non-

modal growth while an unfavorable pressure gradient leads to an increase of the

amplification

The example of a Falkner-Skan flow with a Hartree parameter PH = 0.353

corresponds to the experimental data 12 and simulates the flow over a low-pressure turbine

airfoil upstream of the separation point. At this pressure gradient, the transient growth

mechanism is suppressed, and the energy amplification at low Reynolds number has a
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small value. The theory of the transient growth mechanism predicts that it is possible to

enhance the energy growth by means of wall cooling. The example within the scope of

the parallel flow theory demonstrates that cooling of the wall might provide a tenfold

increase in the energy ratio. Future experiments on boundary-layer tripping accompanied

by wall cooling will contribute to our understanding of the bypass transition mechanism.

The method also predicts that there is an optimal spacing between perturbers and an

optimal location from the leading edge.

Consideration of the optimal velocity perturbations in Fig. 3 indicates that they are

spreading across the boundary layer. This means that an array of generators localized on

the wall will not provide excitation of the optimal disturbances. Therefore, the question

of realizability of the optimal disturbances arises. For example, one can solve the

receptivity problem for an array of generators on the wall and evaluate their shapes (or

other parameters) to find the ones that provide disturbance profiles closest to the optimal

ones. Another option is to solve the receptivity problem for distributed generators

upstream of the starting point, xin , and to find the distribution of generators that leads to

the optimal disturbances. The next option is to design a disturbance generator that

directly affects the flow inside the boundary layer instead of perturbing the near-wall

region only. These fandamental issues should be addressed in future research programs

on the application of bypass transition mechanisms to separation flow control at low

Reynolds numbers.
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Fig. 1. Effects of the spanwise wave number R and the Hartree parameter PH
on transient growth (starting point xin / L = 0.2 ).
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Fig. 2. Effects of the spanwise wave number R and the starting point xin / L on
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Fig. 3. The optimal velocity perturbation u at the ending point xout / Ls = 0.444

and corresponding velocity profiles v and u? at the starting point xin / Ls = 0.111.

The parameters correspond to the experimental conditions in Ref. 12, PHLs = 0.925.
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